enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phase (waves) - Wikipedia

    en.wikipedia.org/wiki/Phase_(waves)

    The phase difference is then the angle between the two hands, measured clockwise. The phase difference is particularly important when two signals are added together by a physical process, such as two periodic sound waves emitted by two sources and recorded together by a microphone.

  3. Wave interference - Wikipedia

    en.wikipedia.org/wiki/Wave_interference

    In physics, interference is a phenomenon in which two coherent waves are combined by adding their intensities or displacements with due consideration for their phase difference. The resultant wave may have greater intensity (constructive interference) or lower amplitude (destructive interference) if the two waves are in phase or out of phase ...

  4. Coherence (physics) - Wikipedia

    en.wikipedia.org/wiki/Coherence_(physics)

    The coherence of two waves expresses how well correlated the waves are as quantified by the cross-correlation function. [7] [1] [8] [9] [10] Cross-correlation quantifies the ability to predict the phase of the second wave by knowing the phase of the first. As an example, consider two waves perfectly correlated for all times (by using a ...

  5. Double-slit experiment - Wikipedia

    en.wikipedia.org/wiki/Double-slit_experiment

    Where d is the distance between the two slits. When the two waves are in phase, i.e. the path difference is equal to an integral number of wavelengths, the summed amplitude, and therefore the summed intensity is maximum, and when they are in anti-phase, i.e. the path difference is equal to half a wavelength, one and a half wavelengths, etc ...

  6. Interferometric visibility - Wikipedia

    en.wikipedia.org/wiki/Interferometric_visibility

    Generally, two or more waves are superimposed and as the phase difference between them varies, the power or intensity (probability or population in quantum mechanics) of the resulting wave oscillates, forming an interference pattern.

  7. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    1-dimensional corollaries for two sinusoidal waves. The following may be deduced by applying the principle of superposition to two sinusoidal waves, using trigonometric identities. The angle addition and sum-to-product trigonometric formulae are useful; in more advanced work complex numbers and fourier series and transforms are used.

  8. Phasor - Wikipedia

    en.wikipedia.org/wiki/Phasor

    In the example of three waves, the phase difference between the first and the last wave was 240°, while for two waves destructive interference happens at 180°. In the limit of many waves, the phasors must form a circle for destructive interference, so that the first phasor is nearly parallel with the last.

  9. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    The interference is constructive when the phase difference between the wave reflected off different atomic planes is a multiple of 2π; this condition (see Bragg condition section below) was first presented by Lawrence Bragg on 11 November 1912 to the Cambridge Philosophical Society. [2]