Search results
Results from the WOW.Com Content Network
Soil structure often gives clues to its texture, organic matter content, biological activity, past soil evolution, human use, and the chemical and mineralogical conditions under which the soil formed. While texture is defined by the mineral component of a soil and is an innate property of the soil that does not change with agricultural ...
Soil texture is a classification instrument used both in the field and laboratory to determine soil classes based on their physical texture. Soil texture can be determined using qualitative methods such as texture by feel, and quantitative methods such as the hydrometer method based on Stokes' law .
The Unified Soil Classification System (USCS) is a soil classification system used in engineering and geology to describe the texture and grain size of a soil. The classification system can be applied to most unconsolidated materials, and is represented by a two-letter symbol. Each letter is described below (with the exception of Pt):
If a soil is composed of at least 5 percent of these clay minerals by weight, it could have the ability to shrink and swell. [3] This property is measured using coefficient of linear extensibility (COLE) values. If a soil has a COLE value greater than 0.06, then it can cause structural damage. [2]
Soil morphology is the branch of soil science dedicated to the technical description of soil, [1] particularly physical properties including texture, color, structure, and consistence. Morphological evaluations of soil are typically performed in the field on a soil profile containing multiple horizons .
Soil properties that can be measured quantitatively are used in this classification system – they include: depth, moisture, temperature, texture, structure, cation exchange capacity, base saturation, clay mineralogy, organic matter content and salt content. There are 12 soil orders (the top hierarchical level) in soil taxonomy.
Soil is placed into the metal cup (Casagrande cup) portion of the device and a groove is made down at its center with a standardized tool of 2 millimetres (0.079 in) width. The cup is repeatedly dropped 10 mm onto a hard rubber base at a rate of 120 blows per minute, during which the groove closes up gradually as a result of the impact.
In 1907, Edgar Buckingham created the first water retention curve. [2] It was measured and made for six soils varying in texture from sand to clay. The data came from experiments made on soil columns 48 inch tall, where a constant water level maintained about 2 inches above the bottom through periodic addition of water from a side tube.