Search results
Results from the WOW.Com Content Network
While a vertical velocity term is not present in the shallow-water equations, note that this velocity is not necessarily zero. This is an important distinction because, for example, the vertical velocity cannot be zero when the floor changes depth, and thus if it were zero only flat floors would be usable with the shallow-water equations.
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
The group velocity is depicted by the red lines (marked B) in the two figures above. In shallow water, the group velocity is equal to the shallow-water phase velocity. This is because shallow water waves are not dispersive. In deep water, the group velocity is equal to half the phase velocity: {{math|c g = 1 / 2 c p. [7]
The concentration of particles usually spreads out in a straight line, and the Rouse distribution works in the water column above the sheet-flow layer where the particles are less concentrated. However, velocity distribution formulas are still being refined to accurately describe particle velocity profiles in steady or oscillatory sheet flows. [2]
Mild-slope equation – Physics phenomenon and formula; Shallow water equations – Set of partial differential equations that describe the flow below a pressure surface in a fluid; Stokes drift – Average velocity of a fluid parcel in a gravity wave; Undertow (water waves) – Return flow below nearshore water waves.
The equation is valid in the absence of any concentrated torques and line forces for a compressible, Newtonian fluid. In the case of incompressible flow (i.e., low Mach number) and isotropic fluids, with conservative body forces, the equation simplifies to the vorticity transport equation:
The area required to calculate the mass flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface, e.g. for substances passing through a filter or a membrane, the real surface is the (generally curved) surface area of the filter, macroscopically - ignoring the area spanned by the holes in the filter/membrane ...
In many engineering applications the local flow velocity vector field is not known in every point and the only accessible velocity is the bulk velocity or average flow velocity ¯ (with the usual dimension of length per time), defined as the quotient between the volume flow rate ˙ (with dimension of cubed length per time) and the cross sectional area (with dimension of square length):