enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    There are two ways to define the "cardinality of a set": The cardinality of a set A is defined as its equivalence class under equinumerosity. A representative set is designated for each equivalence class. The most common choice is the initial ordinal in that class. This is usually taken as the definition of cardinal number in axiomatic set theory.

  3. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    The notion of cardinality, as now understood, was formulated by Georg Cantor, the originator of set theory, in 1874–1884. Cardinality can be used to compare an aspect of finite sets. For example, the sets {1,2,3} and {4,5,6} are not equal, but have the same cardinality, namely three.

  4. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century.

  5. Cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Cardinal_assignment

    The goal of a cardinal assignment is to assign to every set A a specific, unique set that is only dependent on the cardinality of A. This is in accordance with Cantor 's original vision of cardinals: to take a set and abstract its elements into canonical "units" and collect these units into another set, such that the only thing special about ...

  6. Cardinal function - Wikipedia

    en.wikipedia.org/wiki/Cardinal_function

    The most frequently used cardinal function is the function that assigns to a set A its cardinality, denoted by |A|. Aleph numbers and beth numbers can both be seen as cardinal functions defined on ordinal numbers. Cardinal arithmetic operations are examples of functions from cardinal numbers (or pairs of them) to cardinal numbers.

  7. Course Hero buys Symbolab in a rare edtech acquisition

    www.aol.com/news/course-hero-buys-symbolab-rare...

    Months after its $80 million Series B fundraise, Course Hero has acquired Symbolab, an artificial intelligence-powered calculator that helps students answer and understand complex math questions.

  8. Cardinal characteristic of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinal_characteristic_of...

    As is standard in set theory, we denote by the least infinite ordinal, which has cardinality ; it may be identified with the set of natural numbers.. A number of cardinal characteristics naturally arise as cardinal invariants for ideals which are closely connected with the structure of the reals, such as the ideal of Lebesgue null sets and the ideal of meagre sets.

  9. Finite set - Wikipedia

    en.wikipedia.org/wiki/Finite_set

    is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the cardinality (or the cardinal number) of the set. A set that is not a finite set is called an infinite set. For example, the set of all positive integers is infinite: