Search results
Results from the WOW.Com Content Network
The ketone bodies are released by the liver into the blood. All cells with mitochondria can take ketone bodies up from the blood and reconvert them into acetyl-CoA, which can then be used as fuel in their citric acid cycles, as no other tissue can divert its oxaloacetate into the gluconeogenic pathway in the way that the liver does this.
Ketogenesis pathway. The three ketone bodies (acetoacetate, acetone, and beta-hydroxy-butyrate) are marked within orange boxes. Ketogenesis is the biochemical process through which organisms produce ketone bodies by breaking down fatty acids and ketogenic amino acids.
Oxaloacetic acid (also known as oxalacetic acid or OAA) is a crystalline organic compound with the chemical formula HO 2 CC(O)CH 2 CO 2 H. Oxaloacetic acid, in the form of its conjugate base oxaloacetate, is a metabolic intermediate in many processes that occur in animals.
The ketones are released by the liver into the blood. All cells with mitochondria can take up ketones from the blood and reconvert them into acetyl-CoA, which can then be used as fuel in their citric acid cycles, as no other tissue can divert its oxaloacetate into the gluconeogenic pathway in the way that this can occur in the liver.
The ketone bodies are released by the liver into the blood. All cells with mitochondria can take ketone bodies up from the blood and reconvert them into acetyl-CoA, which can then be used as fuel in their citric acid cycles, as no other tissue can divert its oxaloacetate into the gluconeogenic pathway in the way that the liver does.
In organic chemistry, keto acids or ketoacids (also called oxo acids or oxoacids) are organic compounds that contain a carboxylic acid group (−COOH) and a ketone group (>C=O). [1] In several cases, the keto group is hydrated. The alpha-keto acids are especially important in biology as they are involved in the Krebs citric acid cycle and in ...
Oxaloacetate is one of the keto acids preferred by transaminases, and so will be recycled to aspartate, maintaining the flow of nitrogen into the urea cycle. We can summarize this by combining the reactions: CO 2 + glutamate + aspartate + 3 ATP + 2 NAD + + 3 H 2 O → urea + α-ketoglutarate + oxaloacetate + 2 ADP + 2 P i + AMP + PP i + 2 NADH
In alcoholic ketoacidosis, this ketone body is produced in greatest concentration. Ketogenesis occurs if oxaloacetate in the liver cells is depleted, a circumstance created by reduced carbohydrate intake (through diet or starvation); prolonged, excessive alcohol consumption; and/or insulin deficiency.