Search results
Results from the WOW.Com Content Network
Otherwise, n may or may not be prime. The Solovay–Strassen test is an Euler probable prime test (see PSW [3] page 1003). For each individual value of a, the Solovay–Strassen test is weaker than the Miller–Rabin test. For example, if n = 1905 and a = 2, then the Miller-Rabin test shows that n is composite, but the Solovay–Strassen test ...
The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic ...
Then the last prime number worth testing as a possible factor of n is P i where P 2 i + 1 > n; equality here would mean that P i + 1 is a factor. Thus, testing with 2, 3, and 5 suffices up to n = 48 not just 25 because the square of the next prime is 49, and below n = 25 just 2 and 3 are sufficient.
Primality Testing for Beginners is an undergraduate-level mathematics book on primality tests, methods for testing whether a given number is a prime number, centered on the AKS primality test, the first method to solve this problem in polynomial time.
In computational number theory, the Adleman–Pomerance–Rumely primality test is an algorithm for determining whether a number is prime.Unlike other, more efficient algorithms for this purpose, it avoids the use of random numbers, so it is a deterministic primality test.
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P ...
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
In computational number theory, the Lucas test is a primality test for a natural number n; it requires that the prime factors of n − 1 be already known. [ 1 ] [ 2 ] It is the basis of the Pratt certificate that gives a concise verification that n is prime.