enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cellular automaton - Wikipedia

    en.wikipedia.org/wiki/Cellular_automaton

    Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling. A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions.

  3. Golly (program) - Wikipedia

    en.wikipedia.org/wiki/Golly_(program)

    Golly is a tool for the simulation of cellular automata.It is free open-source software written by Andrew Trevorrow and Tomas Rokicki; [3] it can be scripted using Lua [1] or Python.

  4. Conway's Game of Life - Wikipedia

    en.wikipedia.org/wiki/Conway's_Game_of_Life

    Xlife is a cellular-automaton laboratory by Jon Bennett. The standard UNIX X11 Game of Life simulation application for a long time, it has also been ported to Windows. It can handle cellular automaton rules with the same neighbourhood as the Game of Life, and up to eight possible states per cell. [75]

  5. Von Neumann cellular automaton - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_cellular_automaton

    In von Neumann's cellular automaton, the finite state machines (or cells) are arranged in a two-dimensional Cartesian grid, and interface with the surrounding four cells. As von Neumann's cellular automaton was the first example to use this arrangement, it is known as the von Neumann neighbourhood. The set of FSAs define a cell space of ...

  6. Rule 110 - Wikipedia

    en.wikipedia.org/wiki/Rule_110

    Among the 88 possible unique elementary cellular automata, Rule 110 is the only one for which Turing completeness has been directly proven, although proofs for several similar rules follow as simple corollaries (e.g. Rule 124, which is the horizontal reflection of Rule 110). Rule 110 is arguably the simplest known Turing complete system.

  7. Rule 184 - Wikipedia

    en.wikipedia.org/wiki/Rule_184

    The view shown is a 300-pixel crop from a wider simulation. Rule 184 is a one-dimensional binary cellular automaton rule, notable for solving the majority problem as well as for its ability to simultaneously describe several, seemingly quite different, particle systems:

  8. Lenia - Wikipedia

    en.wikipedia.org/wiki/Lenia

    This is the state set of the automaton and characterizes the possible states that may be found at each site. Larger correspond to higher state resolutions in the simulation. Many cellular automata use the lowest possible state resolution, i.e. =. Lenia allows for much higher resolutions.

  9. Wireworld - Wikipedia

    en.wikipedia.org/wiki/Wireworld

    Wireworld, alternatively WireWorld, is a cellular automaton first proposed by Brian Silverman in 1987, as part of his program Phantom Fish Tank. It subsequently became more widely known as a result of an article in the "Computer Recreations" column of Scientific American. [1]