Search results
Results from the WOW.Com Content Network
1643 – Evangelista Torricelli provides a relation between the speed of fluid flowing from an orifice to the height of fluid above the opening, given by Torricelli's law. He also builds a mercury barometer and does a series of experiments on vacuum. [1] 1650 – Otto von Guericke invents the first vacuum pump. [1]
It takes energy to push a fluid through a pipe, and Antoine de Chézy discovered that the hydraulic head loss was proportional to the velocity squared. [5] Consequently, the Chézy formula relates hydraulic slope S (head loss per unit length) to the fluid velocity V and hydraulic radius R :
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion).
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [ 1 ] : 3 It has applications in a wide range of disciplines, including mechanical , aerospace , civil , chemical , and biomedical engineering , as well as geophysics , oceanography , meteorology , astrophysics ...
The history of fluid mechanics is a fundamental strand of the history of physics and engineering. The study of the movement of fluids (liquids and gases) and the forces that act upon them dates back to pre-history.
Antoine de Chézy (1 September 1718 – 5 October 1798), also called Antoine Chézy, was a French physicist and hydraulics engineer who contributed greatly to the study of fluid mechanics and designed a canal for the Paris water supply. [1]
The Chézy formula describes mean flow velocity in turbulent open channel flow and is used broadly in fields related to fluid mechanics and fluid dynamics. Open channels refer to any open conduit, such as rivers, ditches, canals, or partially full pipes. The Chézy formula is defined for uniform equilibrium and non-uniform, gradually varied flows.
Leonhard Euler is credited of introducing both specifications in two publications written in 1755 [3] and 1759. [4] [5] Joseph-Louis Lagrange studied the equations of motion in connection to the principle of least action in 1760, later in a treaty of fluid mechanics in 1781, [6] and thirdly in his book Mécanique analytique. [5]