Search results
Results from the WOW.Com Content Network
In mathematics, a characterization of an object is a set of conditions that, while possibly different from the definition of the object, ... For example, b may mean ...
The character table does not in general determine the group up to isomorphism: for example, the quaternion group Q and the dihedral group of 8 elements, D 4, have the same character table. Brauer asked whether the character table, together with the knowledge of how the powers of elements of its conjugacy classes are distributed, determines a ...
A multiplicative character (or linear character, or simply character) on a group G is a group homomorphism from G to the multiplicative group of a field , usually the field of complex numbers. If G is any group, then the set Ch(G) of these morphisms forms an abelian group under pointwise multiplication.
For example, if p is prime and q(X) is an irreducible polynomial with coefficients in the field with p elements, then the quotient ring [] / (()) is a field of characteristic p. Another example: The field C {\displaystyle \mathbb {C} } of complex numbers contains Z {\displaystyle \mathbb {Z} } , so the characteristic of C {\displaystyle \mathbb ...
In mathematics, a character group is the group of representations of an abelian group by complex-valued functions. These functions can be thought of as one-dimensional matrix representations and so are special cases of the group characters that arise in the related context of character theory .
In mathematics, the method of characteristics is a technique for solving partial differential equations.Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation.
The word "character" is used several ways in mathematics. ... The smallest period of the nonzero values is the conductor of the character. For example, ...
In mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is mapped to itself by every automorphism of the parent group. [ 1 ] [ 2 ] Because every conjugation map is an inner automorphism , every characteristic subgroup is normal ; though the converse is not guaranteed.