Search results
Results from the WOW.Com Content Network
If the Markov chain is time-homogeneous, then the transition matrix P is the same after each step, so the k-step transition probability can be computed as the k-th power of the transition matrix, P k. If the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution π. [41]
In probability theory, uniformization method, (also known as Jensen's method [1] or the randomization method [2]) is a method to compute transient solutions of finite state continuous-time Markov chains, by approximating the process by a discrete-time Markov chain. [2]
A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.
In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution.Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's equilibrium distribution matches the target distribution.
A family of Markov chains is said to be rapidly mixing if the mixing time is a polynomial function of some size parameter of the Markov chain, and slowly mixing otherwise. This book is about finite Markov chains, their stationary distributions and mixing times, and methods for determining whether Markov chains are rapidly or slowly mixing. [1] [4]
Markov decision process (MDP), also called a stochastic dynamic program or stochastic control problem, is a model for sequential decision making when outcomes are uncertain. [ 1 ] Originating from operations research in the 1950s, [ 2 ] [ 3 ] MDPs have since gained recognition in a variety of fields, including ecology , economics , healthcare ...
[1] [2] Such models are often described as M/G/1 type Markov chains because they can describe transitions in an M/G/1 queue. [ 3 ] [ 4 ] The method is a more complicated version of the matrix geometric method and is the classical solution method for M/G/1 chains.
The stochastic matrix was developed alongside the Markov chain by Andrey Markov, a Russian mathematician and professor at St. Petersburg University who first published on the topic in 1906. [3] His initial intended uses were for linguistic analysis and other mathematical subjects like card shuffling , but both Markov chains and matrices rapidly ...