Search results
Results from the WOW.Com Content Network
Secondary metabolites often play an important role in plant defense against herbivory and other interspecies defenses. Humans use secondary metabolites as medicines, flavourings, pigments, and recreational drugs. [2] The term secondary metabolite was first coined by Albrecht Kossel, the 1910 Nobel Prize laureate for medicine and physiology.
Secondary metabolites are produced by many microbes, plants, fungi and animals, usually living in crowded habitats, where chemical defense represents a better option than physical escape. [2] It is very hard to distinguish primary and secondary metabolites due to often overlapping of the intermediates and pathways of primary and secondary ...
A secondary metabolite is not directly involved in those processes, but usually has important ecological function. Secondary metabolites may include pigments, antibiotics or waste products derived from partially metabolized xenobiotics. The study of the metabolome is called metabolomics.
A secondary metabolite is not directly involved in those processes, but usually has important ecological function. Examples include antibiotics and pigments. [40] By contrast, in human-based metabolomics, it is more common to describe metabolites as being either endogenous (produced by the host organism) or exogenous.
Click any text (name of pathway or metabolites) to link to the corresponding article. Single lines: pathways common to most lifeforms. Double lines: pathways not in humans (occurs in e.g. plants, fungi, prokaryotes). Orange nodes: carbohydrate metabolism. Violet nodes: photosynthesis. Red nodes: cellular respiration. Pink nodes: cell signaling.
Many secondary metabolites are cytotoxic and have been selected and optimized through evolution for use as "chemical warfare" agents against prey, predators, and competing organisms. [11] Secondary or specialized metabolites are often unique to specific species, whereas primary metabolites are commonly found across multiple kingdoms. Secondary ...
Some drugs undergo metabolism in both species via different enzymes, resulting in different metabolites, while other drugs are metabolized in one species but excreted unchanged in another species. For this reason, one species's reaction to a substance is not a reliable indication of the substance's effects in humans.
Molecular structure of the flavone backbone (2-phenyl-1,4-benzopyrone) Isoflavan structure Neoflavonoids structure. Flavonoids (or bioflavonoids; from the Latin word flavus, meaning yellow, their color in nature) are a class of polyphenolic secondary metabolites found in plants, and thus commonly consumed in the diets of humans.