enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rhombohedron - Wikipedia

    en.wikipedia.org/wiki/Rhombohedron

    The other coordinates can be obtained from vector addition [5] of the 3 direction vectors: e 1 + e 2, e 1 + e 3, e 2 + e 3, and e 1 + e 2 + e 3. The volume V {\displaystyle V} of a rhombohedron, in terms of its side length a {\displaystyle a} and its rhombic acute angle θ {\displaystyle \theta ~} , is a simplification of the volume of a ...

  3. Rhombic triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_triacontahedron

    Let φ be the golden ratio.The 12 points given by (0, ±1, ±φ) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the 8 points (±1, ±1, ±1) together with the 12 points (0, ±φ, ± ⁠ 1 / φ ⁠) and cyclic permutations of these coordinates.

  4. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).

  5. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term rhomboid is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square.

  6. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    Cartesian coordinates for the vertices of a rhombicosidodecahedron with an edge length of 2 centered at the origin are all even permutations of: [3] (±1, ±1, ± φ 3 ), (± φ 2 , ± φ , ±2 φ ),

  7. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    The rhombic dodecahedron can be seen as a degenerate limiting case of a pyritohedron, with permutation of coordinates (±1, ±1, ±1) and (0, 1 + h, 1 − h 2) with parameter h = 1. These coordinates illustrate that a rhombic dodecahedron can be seen as a cube with six square pyramids attached to each face, allowing them to fit together into a ...

  8. Fractional coordinates - Wikipedia

    en.wikipedia.org/wiki/Fractional_coordinates

    In a fractional coordinate system, the lengths of the basis vectors ,,..., and the angles between them ,, …, are called the lattice parameters (lattice constants) of the lattice. In two- and three-dimensions, these correspond to the lengths and angles between the edges of the unit cell.

  9. Rhombicuboctahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicuboctahedron

    the dihedral angle of a rhombicuboctahedron between two adjacent squares on both the top and bottom is that of a square cupola 135°. The dihedral angle of an octagonal prism between two adjacent squares is the internal angle of a regular octagon 135°. The dihedral angle between two adjacent squares on the edge where a square cupola is ...