Search results
Results from the WOW.Com Content Network
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
Once in orbit, a spacecraft may fire rocket engines to make in-plane changes to a different altitude or type of orbit, or to change its orbital plane. These maneuvers require changes in the craft's velocity, and the classical rocket equation is used to calculate the propellant requirements for a given delta-v.
Rocket mass ratios versus final velocity calculated from the rocket equation. The Tsiolkovsky rocket equation, or ideal rocket equation, can be useful for analysis of maneuvers by vehicles using rocket propulsion. [2] A rocket applies acceleration to itself (a thrust) by expelling part of its mass at high speed. The rocket itself moves due to ...
The thrust-to-weight ratio is usually calculated from initial gross weight at sea level on earth [6] and is sometimes called thrust-to-Earth-weight ratio. [7] The thrust-to-Earth-weight ratio of a rocket or rocket-propelled vehicle is an indicator of its acceleration expressed in multiples of earth's gravitational acceleration, g 0. [5]
The specific impulse of a rocket can be defined in terms of thrust per unit mass flow of propellant. This is an equally valid (and in some ways somewhat simpler) way of defining the effectiveness of a rocket propellant. For a rocket, the specific impulse defined in this way is simply the effective exhaust velocity relative to the rocket, v e ...
When an engine thrust or propulsive force is present, Newton's laws still apply, but Kepler's laws are invalidated. When the thrust stops, the resulting orbit will be different but will once again be described by Kepler's laws which have been set out above. The three laws are: The orbit of every planet is an ellipse with the Sun at one of the foci.
The rocket equation shows that the required amount of propellant dramatically increases with increasing delta-v. Therefore, in modern spacecraft propulsion systems considerable study is put into reducing the total delta- v needed for a given spaceflight, as well as designing spacecraft that are capable of producing larger delta- v .
The Space Shuttle approximated this by using dense solid rocket boosters for the majority of the thrust during the first 120 seconds. The main engines burned a fuel-rich hydrogen and oxygen mixture, operating continuously throughout the launch but providing the majority of thrust at higher altitudes after SRB burnout.