Search results
Results from the WOW.Com Content Network
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
The unit of momentum is the product of the units of mass and velocity. In SI units, if the mass is in kilograms and the velocity is in meters per second then the momentum is in kilogram meters per second (kg⋅m/s). In cgs units, if the mass is in grams and the velocity in centimeters per second, then the momentum is in gram centimeters per ...
Velocity is the speed in combination with the direction of motion of an object. Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies. Velocity is a physical vector quantity: both magnitude and direction are needed to define it.
It produces very accurate results within these domains and is one of the oldest and largest scientific descriptions in science, engineering, and technology. Classical mechanics is fundamentally based on Newton's laws of motion. These laws describe the relationship between the forces acting on a body and the motion of that body.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Newton's law of viscosity is the simplest relationship between the flux of momentum and the velocity gradient. It may be useful to note that this is an unconventional use of the symbol τ zx; the indices are reversed as compared with standard usage in solid mechanics, and the sign is reversed. [11]
where is the distribution of the density of charge, mass, or whatever quantity is being considered. More complex forms take into account the angular relationships between the distance and the physical quantity, but the above equations capture the essential feature of a moment, namely the existence of an underlying r n ρ ( r ) {\displaystyle r ...
In these frameworks, two kinds of mass are defined: rest mass (invariant mass), [note 9] and relativistic mass (which increases with velocity). Rest mass is the Newtonian mass as measured by an observer moving along with the object. Relativistic mass is the total quantity of energy in a body or system divided by c 2. The two are related by the ...