enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point. (In fact, one can show that f takes both positive and negative values in small neighborhoods around (0, 0) and so this point is a saddle point of f.)

  3. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:

  4. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The Hessian matrix plays an important role in Morse theory and catastrophe theory, because its kernel and eigenvalues allow classification of the critical points. [2] [3] [4] The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The ...

  5. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    The second derivative test can still be used to analyse critical points by considering the eigenvalues of the Hessian matrix of second partial derivatives of the function at the critical point. If all of the eigenvalues are positive, then the point is a local minimum; if all are negative, it is a local maximum.

  6. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    If the second derivative is null, the critical point is generally an inflection point, but may also be an undulation point, which may be a local minimum or a local maximum. For a function of n variables, the number of negative eigenvalues of the Hessian matrix at a critical point is called the index of the critical point.

  7. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    However, not all critical points are extrema. One can often distinguish whether a critical point is a local maximum, a local minimum, or neither by using the first derivative test, second derivative test, or higher-order derivative test, given sufficient differentiability. [5]

  8. Mechanical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equilibrium

    A system is in mechanical equilibrium at the critical points of the function describing the system's potential energy. These points can be located using the fact that the derivative of the function is zero at these points. To determine whether or not the system is stable or unstable, the second derivative test is applied.

  9. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    However, in the general statement of Fermat's theorem, where one is only given that the derivative at is positive, one can only conclude that secant lines through will have positive slope, for secant lines between and near enough points. Conversely, if the derivative of f at a point is zero (is a stationary point), one cannot in general ...