enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    In mathematics, the Weierstrass function, named after its discoverer, Karl Weierstrass, is an example of a real-valued function that is continuous everywhere but differentiable nowhere. It is also an example of a fractal curve. The Weierstrass function has been historically served the role of a pathological function, being the first published ...

  3. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    In particular, any differentiable function must be continuous at every point in its domain. The converse does not hold: a continuous function need not be differentiable. For example, a function with a bend, cusp, or vertical tangent may be continuous, but fails to be differentiable at the location of the anomaly.

  4. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    However, this function is not continuously differentiable. A smooth function that is not analytic. The function = {, < is continuous, but not differentiable at x = 0, so it is of class C 0, but not of class C 1.

  5. Cantor function - Wikipedia

    en.wikipedia.org/wiki/Cantor_function

    In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero derivative almost everywhere, its value still goes from ...

  6. Pathological (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Pathological_(mathematics)

    A classic example of a pathology is the Weierstrass function, a function that is continuous everywhere but differentiable nowhere. [1] The sum of a differentiable function and the Weierstrass function is again continuous but nowhere differentiable; so there are at least as many such functions as differentiable functions.

  7. Function of a real variable - Wikipedia

    en.wikipedia.org/wiki/Function_of_a_real_variable

    The absolute value is defined and continuous everywhere, and is differentiable everywhere, except for zero. The cubic root is defined and continuous everywhere, and is differentiable everywhere, except for zero. Many common functions are not defined everywhere, but are continuous and differentiable everywhere where they are defined. For example:

  8. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    These statements are not, in general, true if the function is defined on an open interval (,) (or any set that is not both closed and bounded), as, for example, the continuous function () =, defined on the open interval (0,1), does not attain a maximum, being unbounded above.

  9. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints −r and r. Since f (−r) = f (r), Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero. The theorem applies even when the function cannot be differentiated ...