enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bailey–Borwein–Plouffe formula - Wikipedia

    en.wikipedia.org/wiki/Bailey–Borwein–Plouffe...

    This does not compute the nth decimal digit of π (i.e., in base 10). [3] But another formula discovered by Plouffe in 2022 allows extracting the nth digit of π in decimal. [4] BBP and BBP-inspired algorithms have been used in projects such as PiHex [5] for calculating many digits of π using distributed computing. The existence of this ...

  3. Bellard's formula - Wikipedia

    en.wikipedia.org/wiki/Bellard's_formula

    Bellard's formula is used to calculate the nth digit of π in base 16. Bellard's formula was discovered by Fabrice Bellard in 1997. It is about 43% faster than the Bailey–Borwein–Plouffe formula (discovered in 1995). [1] [2] It has been used in PiHex, the now-completed distributed computing project.

  4. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    Super PI by Kanada Laboratory [99] in the University of Tokyo is the program for Microsoft Windows for runs from 16,000 to 33,550,000 digits. It can compute one million digits in 40 minutes, two million digits in 90 minutes and four million digits in 220 minutes on a Pentium 90 MHz. Super PI version 1.9 is available from Super PI 1.9 page.

  5. Chronology of computation of π - Wikipedia

    en.wikipedia.org/wiki/Chronology_of_computation...

    Finds a formula that allows the nth hexadecimal digit of pi to be calculated without calculating the preceding digits. 28 August 1995 Yasumasa Kanada and Daisuke Takahashi: HITAC S-3800/480 (dual CPU) [36] [37] 56.74 hours? 4,294,960,000: 11 October 1995 Yasumasa Kanada and Daisuke Takahashi: HITAC S-3800/480 (dual CPU) [38] [37] 116.63 hours ...

  6. Simon Plouffe - Wikipedia

    en.wikipedia.org/wiki/Simon_Plouffe

    Simon Plouffe (born June 11, 1956) is a French Canadian mathematician who discovered the Bailey–Borwein–Plouffe formula (BBP algorithm) which permits the computation of the nth binary digit of π, in 1995. [1] [2] [3] His other 2022 formula allows extracting the nth digit of π in decimal. [4] He was born in Saint-Jovite, Quebec.

  7. The digits of pi extend into infinity, and pi is itself an irrational number, meaning it can’t be truly represented by an integer fraction (the one we often learn in school, 22/7, is not very ...

  8. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    In other words, the n th digit of this number is 1 only if n is one of the numbers 1! = 1, 2! = 2, 3! = 6, 4! = 24, etc. Liouville showed that this number belongs to a class of transcendental numbers that can be more closely approximated by rational numbers than can any irrational algebraic number, and this class of numbers is called the ...

  9. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    In 1844, a record was set by Zacharias Dase, who employed a Machin-like formula to calculate 200 decimals of π in his head at the behest of German mathematician Carl Friedrich Gauss. [88] In 1853, British mathematician William Shanks calculated π to 607 digits, but made a mistake in the 528th digit, rendering all subsequent digits incorrect ...