enow.com Web Search

  1. Ad

    related to: binomial probability formula statistics

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).

  3. Binomial test - Wikipedia

    en.wikipedia.org/wiki/Binomial_test

    The binomial test is useful to test hypotheses about the probability of success: : = where is a user-defined value between 0 and 1.. If in a sample of size there are successes, while we expect , the formula of the binomial distribution gives the probability of finding this value:

  4. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Ewens's sampling formula is a probability distribution on the set of all partitions of an integer n, arising in population genetics. The Balding–Nichols model; The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution.

  5. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.

  6. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted. [1]

  7. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    The rule can then be derived [2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p) n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr( X = 0) = 0.05 and hence (1− p ) n = .05 so n ln (1– p ) = ln .05 ≈ −2.996.

  8. Poisson binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_binomial_distribution

    A Poisson binomial distribution can be approximated by a binomial distribution where , the mean of the , is the success probability of . The variances of P B {\displaystyle PB} and B {\displaystyle B} are related by the formula

  9. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of possible outcomes for an experiment. [1] [2] It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). [3]

  1. Ad

    related to: binomial probability formula statistics