Search results
Results from the WOW.Com Content Network
The Tonelli–Shanks algorithm (referred to by Shanks as the RESSOL algorithm) is used in modular arithmetic to solve for r in a congruence of the form r 2 ≡ n (mod p), where p is a prime: that is, to find a square root of n modulo p.
Significant wave height H 1/3, or H s or H sig, as determined in the time domain, directly from the time series of the surface elevation, is defined as the average height of that one-third of the N measured waves having the greatest heights: [5] / = = where H m represents the individual wave heights, sorted into descending order of height as m increases from 1 to N.
As discussed in § Constructibility, only certain angles that are rational multiples of radians have trigonometric values that can be expressed with square roots. The angle 1°, being π / 180 = π / ( 2 2 ⋅ 3 2 ⋅ 5 ) {\displaystyle \pi /180=\pi /(2^{2}\cdot 3^{2}\cdot 5)} radians, has a repeated factor of 3 in the denominator and therefore ...
The square root of 2 is an algebraic number equal to the length of the hypotenuse of a right triangle with legs of length 1. An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational ) coefficients.
Lighting and reflection calculations, as in the video game OpenArena, use the fast inverse square root code to compute angles of incidence and reflection.. Fast inverse square root, sometimes referred to as Fast InvSqrt() or by the hexadecimal constant 0x5F3759DF, is an algorithm that estimates , the reciprocal (or multiplicative inverse) of the square root of a 32-bit floating-point number in ...
An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.
The unique primitive square root of unity is ; the primitive fourth roots of unity are and . The n th roots of unity allow expressing all n th roots of a complex number z as the n products of a given n th roots of z with a n th root of unity.
Two root systems (E 1, Φ 1) and (E 2, Φ 2) are called isomorphic if there is an invertible linear transformation E 1 → E 2 which sends Φ 1 to Φ 2 such that for each pair of roots, the number , is preserved. [7] The root lattice of a root system Φ is the Z-submodule of E generated by Φ.