enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinal characteristic of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinal_characteristic_of...

    As is standard in set theory, we denote by the least infinite ordinal, which has cardinality ; it may be identified with the set of natural numbers.. A number of cardinal characteristics naturally arise as cardinal invariants for ideals which are closely connected with the structure of the reals, such as the ideal of Lebesgue null sets and the ideal of meagre sets.

  3. Cardinality of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinality_of_the_continuum

    Cantor defined cardinality in terms of bijective functions: two sets have the same cardinality if, and only if, there exists a bijective function between them. Between any two real numbers a < b , no matter how close they are to each other, there are always infinitely many other real numbers, and Cantor showed that they are as many as those ...

  4. Continuum hypothesis - Wikipedia

    en.wikipedia.org/wiki/Continuum_hypothesis

    The independence proof just described shows that CH is independent of ZFC. Further research has shown that CH is independent of all known large cardinal axioms in the context of ZFC. [8] Moreover, it has been shown that the cardinality of the continuum can be any cardinal consistent with König's theorem.

  5. List of continuity-related mathematical topics - Wikipedia

    en.wikipedia.org/wiki/List_of_continuity-related...

    Continuous probability distribution: Sometimes this term is used to mean a probability distribution whose cumulative distribution function (c.d.f.) is (simply) continuous. Sometimes it has a less inclusive meaning: a distribution whose c.d.f. is absolutely continuous with respect to Lebesgue measure. This less inclusive sense is equivalent to ...

  6. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century.

  7. Continuous or discrete variable - Wikipedia

    en.wikipedia.org/.../Continuous_or_discrete_variable

    In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]

  8. Is it possible to retire comfortably on Social Security alone ...

    www.aol.com/possible-retire-comfortably-social...

    When they retired, the Leedys lived in Alexandria, Virginia, an affluent, high-cost Washington, D.C., suburb. “My mother was 92, and we knew we had to have her live with us, as she could not ...

  9. Cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Cardinal_assignment

    The oldest definition of the cardinality of a set X (implicit in Cantor and explicit in Frege and Principia Mathematica) is as the set of all sets that are equinumerous with X: this does not work in ZFC or other related systems of axiomatic set theory because this collection is too large to be a set, but it does work in type theory and in New ...

  1. Related searches cardinality of the continuous variable meaning in research example question

    cardinality of continuous numberscantor cardinality function
    cardinality of the continuumcantor cardinality