enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    Both AVL trees and red–black (RB) trees are self-balancing binary search trees and they are related mathematically. Indeed, every AVL tree can be colored red–black, [14] but there are RB trees which are not AVL balanced. For maintaining the AVL (or RB) tree's invariants, rotations play an important role.

  3. Interval tree - Wikipedia

    en.wikipedia.org/wiki/Interval_tree

    An augmented tree can be built from a simple ordered tree, for example a binary search tree or self-balancing binary search tree, ordered by the 'low' values of the intervals. An extra annotation is then added to every node, recording the maximum upper value among all the intervals from this node down.

  4. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    For example, if binary tree sort is implemented with a self-balancing BST, we have a very simple-to-describe yet asymptotically optimal (⁡) sorting algorithm. Similarly, many algorithms in computational geometry exploit variations on self-balancing BSTs to solve problems such as the line segment intersection problem and the point location ...

  5. Join-based tree algorithms - Wikipedia

    en.wikipedia.org/wiki/Join-based_tree_algorithms

    In 2016, Blelloch et al. formally proposed the join-based algorithms, and formalized the join algorithm for four different balancing schemes: AVL trees, red–black trees, weight-balanced trees and treaps. In the same work they proved that Adams' algorithms on union, intersection and difference are work-optimal on all the four balancing schemes.

  6. WAVL tree - Wikipedia

    en.wikipedia.org/wiki/WAVL_tree

    The weak AVL tree is defined by the weak AVL rule: Weak AVL rule: all rank differences are 1 or 2, and all leaf nodes have rank 0. Note that weak AVL tree generalizes the AVL tree by allowing for 2,2 type node. A simple proof shows that a weak AVL tree can be colored in a way that represents a red-black tree.

  7. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    The depth of a tree is the maximum depth of any vertex. Depth is commonly needed in the manipulation of the various self-balancing trees, AVL trees in particular. The root has depth zero, leaves have height zero, and a tree with only a single vertex (hence both a root and leaf) has depth and height zero.

  8. Input enhancement (computer science) - Wikipedia

    en.wikipedia.org/wiki/Input_Enhancement...

    Trees are used throughout computer science and many different types of trees – binary search trees, AVL trees, red–black trees, and 2–3 trees to name just a small few – have been developed to properly store, access, and manipulate data while maintaining their structure. Trees are a principal data structure for dictionary implementation.

  9. Red–black tree - Wikipedia

    en.wikipedia.org/wiki/Red–black_tree

    The worst-case height of AVL is 0.720 times the worst-case height of red-black trees, so AVL trees are more rigidly balanced. The performance measurements of Ben Pfaff with realistic test cases in 79 runs find AVL to RB ratios between 0.677 and 1.077, median at 0.947, and geometric mean 0.910. [22] The performance of WAVL trees lie in between ...