Search results
Results from the WOW.Com Content Network
Plastic degradation in marine bacteria describes when certain pelagic bacteria break down polymers and use them as a primary source of carbon for energy. Polymers such as polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) are incredibly useful for their durability and relatively low cost of production, however it is their persistence and difficulty to be properly ...
Ideonella sakaiensis is a bacterium from the genus Ideonella and family Comamonadaceae capable of breaking down and consuming the plastic polyethylene terephthalate (PET) using it as both a carbon and energy source. The bacterium was originally isolated from a sediment sample taken outside of a plastic bottle recycling facility in Sakai City ...
Polymer degradation is the reduction in the physical properties of a polymer, such as strength, caused by changes in its chemical composition.Polymers and particularly plastics are subject to degradation at all stages of their product life cycle, including during their initial processing, use, disposal into the environment and recycling. [1]
A single 5mm piece of plastic can host 1,000s of different microbial species. [4] Some marine bacteria can break down plastic polymers and use the carbon as a source of energy. Microbes interacting with the surface of plastics. Plastic pollution acts as a more durable "ship" than biodegradable material for carrying the organisms over long ...
In some cases the degradation is increased by bacteria or various enzyme cocktails. The situation is very different with polymers where the backbone consists solely of C-C bonds. These polymers include polyethylene, but also polypropylene, polystyrene and acrylates.
The alkaliphilic bacteria Bacillus pseudofirmus and Salipaludibacillus agaradhaerens can degrade low-density polyethylene (LDPE). These bacteria can degrade LDPE on their own but work more quickly as a consortium of both species, and degradation is faster still when iron oxide nanoparticles are added. [7]
The discovery of PETase from I. sakaiensis provides a potential solution to the world’s amassing plastic; however, naturally occurring enzymes are limited in their degradation abilities due to instability, low activity, and expression levels, which ultimately drive the need for improvement if they are to be used for large-scale industrial ...
Pelobacter venetianus is a species of bacteria that degrade polyethylene ... "Enzymes Involved in Anaerobic Polyethylene Glycol Degradation by Pelobacter venetianus ...