enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.

  3. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    A continuous function () on the closed interval [,] showing the absolute max (red) and the absolute min (blue).. In calculus, the extreme value theorem states that if a real-valued function is continuous on the closed and bounded interval [,], then must attain a maximum and a minimum, each at least once.

  4. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    Stated precisely, suppose that f is a real-valued function defined on some open interval containing the point x and suppose further that f is continuous at x.. If there exists a positive number r > 0 such that f is weakly increasing on (x − r, x] and weakly decreasing on [x, x + r), then f has a local maximum at x.

  5. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The point where the red constraint tangentially touches a blue contour is the maximum of f(x, y) along the constraint, since d 1 > d 2. For the case of only one constraint and only two choice variables (as exemplified in Figure 1), consider the optimization problem, (,) (,) = (Sometimes an additive constant is shown separately rather than being ...

  6. Approximation theory - Wikipedia

    en.wikipedia.org/wiki/Approximation_theory

    In each case, the number of extrema is N+2, that is, 6. Two of the extrema are at the end points of the interval, at the left and right edges of the graphs. Two of the extrema are at the end points of the interval, at the left and right edges of the graphs.

  7. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    [2] For functions of three or more variables, the determinant of the Hessian does not provide enough information to classify the critical point, because the number of jointly sufficient second-order conditions is equal to the number of variables, and the sign condition on the determinant of the Hessian is only one of the conditions.

  8. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Finding the extrema of functionals is similar to finding the maxima and minima of functions. The maxima and minima of a function may be located by finding the points where its derivative vanishes (i.e., is equal to zero). The extrema of functionals may be obtained by finding functions for which the functional derivative is equal to

  9. Golden-section search - Wikipedia

    en.wikipedia.org/wiki/Golden-section_search

    The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.