Search results
Results from the WOW.Com Content Network
The model describes how dissolved oxygen (DO) decreases in a river or stream along a certain distance by degradation of biochemical oxygen demand (BOD). The equation was derived by H. W. Streeter, a sanitary engineer, and Earle B. Phelps , a consultant for the U.S. Public Health Service , in 1925, based on field data from the Ohio River .
Dissolved oxygen levels required by various species in the Chesapeake Bay (US). In aquatic environments, oxygen saturation is a ratio of the concentration of "dissolved oxygen" (DO, O 2), to the maximum amount of oxygen that will dissolve in that water body, at the temperature and pressure which constitute stable equilibrium conditions.
The amount of dissolved oxygen is a measure of the biological activity of the water masses. Phytoplankton and macroalgae present in the water mass-produce oxygen by way of photosynthesis. Bacteria and eukaryotic organisms (zooplankton, fish) consume this oxygen through cellular respiration. The result of these two mechanisms determines the ...
BOD test bottles at the laboratory of a wastewater treatment plant. Biochemical oxygen demand (also known as BOD or biological oxygen demand) is an analytical parameter representing the amount of dissolved oxygen (DO) consumed by aerobic bacteria growing on the organic material present in a water sample at a specific temperature over a specific time period.
An example where Henry's law is at play is the depth-dependent dissolution of oxygen and nitrogen in the blood of underwater divers that changes during decompression, going to decompression sickness. An everyday example is carbonated soft drinks, which contain dissolved carbon dioxide.
In environmental chemistry, the chemical oxygen demand (COD) is an indicative measure of the amount of oxygen that can be consumed by reactions in a measured solution. It is commonly expressed in mass of oxygen consumed over volume of solution, which in SI units is milligrams per liter ( mg / L ).
Whenever the partial pressure of oxygen in air (or mixture) exceeds 0.6 bar then it is considered that significant amounts of dissolved oxygen are present in the tissues and that there is an increased decompression risk. This is estimated by adding 25% to the dive depth, and proceeding with the calculations as just outlined using assumption (1).
Bubbling a solution with a high-purity (typically inert) gas can pull out undesired (typically reactive) dissolved gases such as oxygen and carbon dioxide. Nitrogen, argon, helium and other inert gases are commonly used. To maximize this process called sparging, the solution is stirred vigorously and bubbled for a long time.