enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.

  3. Deviation of a poset - Wikipedia

    en.wikipedia.org/wiki/Deviation_of_a_poset

    The poset of positive integers has deviation 0: every descending chain is finite, so the defining condition for deviation is vacuously true. However, its opposite poset has deviation 1. Let k be an algebraically closed field and consider the poset of ideals of the polynomial ring k[x] in one variable. Since the deviation of this poset is the ...

  4. Graded poset - Wikipedia

    en.wikipedia.org/wiki/Graded_poset

    Sometimes a graded poset is called a ranked poset but that phrase has other meanings; see Ranked poset. A rank or rank level of a graded poset is the subset of all the elements of the poset that have a given rank value. [1] [2] Graded posets play an important role in combinatorics and can be visualized by means of a Hasse diagram.

  5. Glossary of order theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_order_theory

    A Scott domain is a partially ordered set which is a bounded complete algebraic cpo. Scott open. See Scott topology. Scott topology. For a poset P, a subset O is Scott-open if it is an upper set and all directed sets D that have a supremum in O have non-empty intersection with O. The set of all Scott-open sets forms a topology, the Scott topology.

  6. Posset - Wikipedia

    en.wikipedia.org/wiki/Posset

    Posset is frequently used as a starting point for other recipes (e.g. "Make a styf Poshote of Milke an Ale", and "Take cowe Mylke, & set it ouer þe fyre, & þrow þer-on Saunderys, & make a styf poshotte of Ale", each of which is the first sentence of a longer recipe). [4]

  7. Differential poset - Wikipedia

    en.wikipedia.org/wiki/Differential_poset

    In mathematics, a differential poset is a partially ordered set (or poset for short) satisfying certain local properties. (The formal definition is given below.) This family of posets was introduced by Stanley (1988) as a generalization of Young's lattice (the poset of integer partitions ordered by inclusion), many of whose combinatorial properties are shared by all differential posets.

  8. Complete partial order - Wikipedia

    en.wikipedia.org/wiki/Complete_partial_order

    A partially ordered set is a directed-complete partial order (dcpo) if each of its directed subsets has a supremum. (A subset of a partial order is directed if it is non-empty and every pair of elements has an upper bound in the subset.) In the literature, dcpos sometimes also appear under the label up-complete poset.

  9. Tree (set theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(set_theory)

    The partially ordered set on the right (in red) is not a tree because x 1 < x 3 and x 2 < x 3, but x 1 is not comparable to x 2 (dashed orange line). A tree is a partially ordered set (poset) (T, <) such that for each t ∈ T, the set {s ∈ T : s < t} is well-ordered by the relation <. In particular, each well-ordered set (T, <) is a tree.