enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.

  3. Posetal category - Wikipedia

    en.wikipedia.org/wiki/Posetal_category

    For example, under this assumption, a poset may be defined as a small posetal category, a distributive lattice as a small posetal distributive category, a Heyting algebra as a small posetal finitely cocomplete cartesian closed category, and a Boolean algebra as a small posetal finitely cocomplete *-autonomous category.

  4. Glossary of order theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_order_theory

    A Scott domain is a partially ordered set which is a bounded complete algebraic cpo. Scott open. See Scott topology. Scott topology. For a poset P, a subset O is Scott-open if it is an upper set and all directed sets D that have a supremum in O have non-empty intersection with O. The set of all Scott-open sets forms a topology, the Scott topology.

  5. List of forcing notions - Wikipedia

    en.wikipedia.org/wiki/List_of_forcing_notions

    Forcing with this poset collapses λ down to κ. Levy collapsing: If κ is regular and λ is inaccessible, then P is the set of functions p on subsets of λ × κ with domain of size less than κ and p(α, ξ) < α for every (α, ξ) in the domain of p. This poset collapses all cardinals less than λ onto κ, but keeps λ as the successor to κ.

  6. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    In a partially ordered set there may be some elements that play a special role. The most basic example is given by the least element of a poset. For example, 1 is the least element of the positive integers and the empty set is the least set under the subset order. Formally, an element m is a least element if:

  7. Graded poset - Wikipedia

    en.wikipedia.org/wiki/Graded_poset

    Sometimes a graded poset is called a ranked poset but that phrase has other meanings; see Ranked poset. A rank or rank level of a graded poset is the subset of all the elements of the poset that have a given rank value. [1] [2] Graded posets play an important role in combinatorics and can be visualized by means of a Hasse diagram.

  8. Ideal (order theory) - Wikipedia

    en.wikipedia.org/wiki/Ideal_(order_theory)

    For example, the ideal completion of a given partial order P is the set of all ideals of P ordered by subset inclusion. This construction yields the free dcpo generated by P . An ideal is principal if and only if it is compact in the ideal completion, so the original poset can be recovered as the sub-poset consisting of compact elements.

  9. Deviation of a poset - Wikipedia

    en.wikipedia.org/wiki/Deviation_of_a_poset

    The poset of positive integers has deviation 0: every descending chain is finite, so the defining condition for deviation is vacuously true. However, its opposite poset has deviation 1. Let k be an algebraically closed field and consider the poset of ideals of the polynomial ring k[x] in one variable. Since the deviation of this poset is the ...