Search results
Results from the WOW.Com Content Network
The theoretical study of time travel generally follows the laws of general relativity. Quantum mechanics requires physicists to solve equations describing how probabilities behave along closed timelike curves (CTCs), which are theoretical loops in spacetime that might make it possible to travel through time.
The problem of time is central to these theoretical attempts. It remains unclear how time is related to quantum probability, whether time is fundamental or a consequence of processes, and whether time is approximate, among other issues. Different theories try different answers to the questions but no clear solution has emerged. [6]
[21] This was the first time any scientist had used science to try to explain how our universe may have originated from nothing. [17] In his paper, Tryon first deals with the idea of how our universe could have come from nothing and yet respect the laws of physics. Following the first law of thermodynamics, energy can neither be created nor ...
Retrocausality, or backwards causation, is a concept of cause and effect in which an effect precedes its cause in time and so a later event affects an earlier one. [1] [2] In quantum physics, the distinction between cause and effect is not made at the most fundamental level and so time-symmetric systems can be viewed as causal or retrocausal.
Quantum foam (or spacetime foam, or spacetime bubble) is a theoretical quantum fluctuation of spacetime on very small scales due to quantum mechanics. The theory predicts that at this small scale, particles of matter and antimatter are constantly created and destroyed.
Ulf Danielsson, an author and a professor of theoretical physics at Uppsala University in Sweden, believes one of the reasons for the association between quantum physics and consciousness—at ...
In the late 1920s, the then new quantum mechanics showed that the chemical bonds between atoms were examples of (quantum) electrical forces, justifying Dirac's boast that "the underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known". [24]
The subject of counterfactual definiteness receives attention in the study of quantum mechanics because it is argued that, when challenged by the findings of quantum mechanics, classical physics must give up its claim to one of three assumptions: locality (no "spooky action at a distance"), no-conspiracy (called also "asymmetry of time"), [4] [5] or counterfactual definiteness (or "non ...