Search results
Results from the WOW.Com Content Network
Stalls depend only on angle of attack, not airspeed. [24] However, the slower an aircraft flies, the greater the angle of attack it needs to produce lift equal to the aircraft's weight. [25] As the speed decreases further, at some point this angle will be equal to the critical (stall) angle of attack. This speed is called the "stall speed".
Platform angle of attack Coefficients of drag and lift versus angle of attack. Stall speed corresponds to the angle of attack at the maximum coefficient of lift (C LMAX) A typical lift coefficient curve for an airfoil at a given airspeed. The lift coefficient of a fixed-wing aircraft varies with angle of attack. Increasing angle of attack is ...
The angle at which maximum lift coefficient occurs is the stall angle of the airfoil, which is approximately 10 to 15 degrees on a typical airfoil. The stall angle for a given profile is also increasing with increasing values of the Reynolds number, at higher speeds indeed the flow tends to stay attached to the profile for longer delaying the ...
The minimum such speed is the stall speed, or V SO. The indicated airspeed at which a fixed-wing aircraft stalls varies with the weight of the aircraft but does not vary significantly with altitude. At speeds close to the stall speed the aircraft's wings are at a high angle of attack. At higher altitudes, the air density is lower than at sea level.
angle of attack α: angle between the x w,y w-plane and the aircraft longitudinal axis and, among other things, is an important variable in determining the magnitude of the force of lift When performing the rotations described earlier to obtain the body frame from the Earth frame, there is this analogy between angles:
For this reason the angle of attack is stable when it is less than the stalling angle. [1] [3] The aircraft displays damping in roll. [4] When the wing is stalled and the angle of attack is greater than the stalling angle, any increase in angle of attack causes a decrease in lift coefficient that causes the wing to descend. As the wing descends ...
If the angle of attack exceeds its critical value, the airplane will stall. Pilots are trained to avoid stalls during aerobatic maneuvering and especially in combat, as a stall can permit an opponent to gain an advantageous position while the stalled aircraft's pilot attempts to recover.
The system is composed of fuselage or wing-mounted angle of attack (AOA) sensors that are connected to an avionics computer, which receives inputs from the AOA sensors along with a variety of other flight systems. When this data indicates an imminent stall condition, the computer actuates both the stick shaker and an auditory alert. [8]