enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    Many other fundamental quantities in science are time derivatives of one another: force is the time derivative of momentum; power is the time derivative of energy; electric current is the time derivative of electric charge; and so on. A common occurrence in physics is the time derivative of a vector, such as velocity or displacement. In dealing ...

  3. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Further time derivatives have also been named, as snap or jounce (fourth derivative), crackle (fifth derivative), and pop (sixth derivative). [12] [13] The seventh derivative is known as "Bang," as it is a logical continuation to the cycle. The eighth derivative has been referred to as "Boom," and the 9th is known as "Crash."

  4. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  5. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    velocity is the derivative (with respect to time) of an object's displacement (distance from the original position) acceleration is the derivative (with respect to time) of an object's velocity, that is, the second derivative (with respect to time) of an object's position. For example, if an object's position on a line is given by

  6. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    An example of the use of calculus in mechanics is Newton's second law of motion, which states that the derivative of an object's momentum concerning time equals the net force upon it. Alternatively, Newton's second law can be expressed by saying that the net force equals the object's mass times its acceleration , which is the time derivative of ...

  7. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances. Derivatives can be generalized ...

  8. Fluxion - Wikipedia

    en.wikipedia.org/wiki/Fluxion

    If the fluent ⁠ ⁠ is defined as = (where ⁠ ⁠ is time) the fluxion (derivative) at = is: ˙ = = (+) (+) = + + + = + Here ⁠ ⁠ is an infinitely small amount of time. [6] So, the term ⁠ ⁠ is second order infinite small term and according to Newton, we can now ignore ⁠ ⁠ because of its second order infinite smallness comparing to first order infinite smallness of ⁠ ⁠. [7]

  9. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The height and redness indicate the temperature at each point. The initial state has a uniformly hot hoof-shaped region (red) surrounded by uniformly cold region (yellow). As time passes the heat diffuses into the cold region. In mathematics and physics, the heat equation is a certain partial differential equation.