enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Rational numbers (): Numbers that can be expressed as a ratio of an integer to a non-zero integer. [3] All integers are rational, but there are rational numbers that are not integers, such as −2/9. Real numbers (): Numbers that correspond to points along a line. They can be positive, negative, or zero.

  3. Non-integer base of numeration - Wikipedia

    en.wikipedia.org/wiki/Non-integer_base_of_numeration

    The numbers d i are non-negative integers less than β. This is also known as a β -expansion , a notion introduced by Rényi (1957) and first studied in detail by Parry (1960) . Every real number has at least one (possibly infinite) β -expansion.

  4. List of undecidable problems - Wikipedia

    en.wikipedia.org/wiki/List_of_undecidable_problems

    For functions in certain classes, the problem of determining: whether two functions are equal, known as the zero-equivalence problem (see Richardson's theorem); [4] the zeroes of a function; whether the indefinite integral of a function is also in the class. [5] Of course, some subclasses of these problems are decidable.

  5. Ideal number - Wikipedia

    en.wikipedia.org/wiki/Ideal_number

    An example of a nonprincipal ideal in this ring is the set of all + where and are integers; the cube of this ideal is principal, and in fact the class group is cyclic of order three. The corresponding class field is obtained by adjoining an element w {\displaystyle w} satisfying w 3 − w − 1 = 0 {\displaystyle w^{3}-w-1=0} to Q ( y ...

  6. Ideal class group - Wikipedia

    en.wikipedia.org/wiki/Ideal_class_group

    The number of ideal classes (the class number of R) may be infinite in general. In fact, every abelian group is isomorphic to the ideal class group of some Dedekind domain. [1] But if R is a ring of algebraic integers, then the class number is always finite. This is one of the main results of classical algebraic number theory.

  7. Class number problem - Wikipedia

    en.wikipedia.org/wiki/Class_number_problem

    In mathematics, the Gauss class number problem (for imaginary quadratic fields), as usually understood, is to provide for each n ≥ 1 a complete list of imaginary quadratic fields (for negative integers d) having class number n.

  8. Natural number - Wikipedia

    en.wikipedia.org/wiki/Natural_number

    The first ordinal number that is not a natural number is expressed as ω; this is also the ordinal number of the set of natural numbers itself. The least ordinal of cardinality ℵ 0 (that is, the initial ordinal of ℵ 0 ) is ω but many well-ordered sets with cardinal number ℵ 0 have an ordinal number greater than ω .

  9. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    7: 6 [6] Clay Mathematics Institute: 2000 Simon problems: 15 <12 [7] [8] Barry Simon: 2000 Unsolved Problems on Mathematics for the 21st Century [9] 22-Jair Minoro Abe, Shotaro Tanaka: 2001 DARPA's math challenges [10] [11] 23-DARPA: 2007 Erdős's problems [12] >893: 603: Paul Erdős: Over six decades of Erdős' career, from the 1930s to 1990s