Search results
Results from the WOW.Com Content Network
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] ... For example, the union of three sets A, B, ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
It is the algebra of the set-theoretic operations of union, intersection and complementation, and the relations of equality and inclusion. For a basic introduction to sets see the article on sets, for a fuller account see naive set theory, and for a full rigorous axiomatic treatment see axiomatic set theory.
Generalizing the results of these examples gives the principle of inclusion–exclusion. To find the cardinality of the union of n sets: Include the cardinalities of the sets. Exclude the cardinalities of the pairwise intersections. Include the cardinalities of the triple-wise intersections. Exclude the cardinalities of the quadruple-wise ...
In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets { 1 , 2 , 3 } {\displaystyle \{1,2,3\}} and { 3 , 4 } {\displaystyle \{3,4\}} is { 1 , 2 , 4 ...
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.
The simple theorems in the algebra of sets are some of the elementary properties of the algebra of union (infix operator: ∪), intersection (infix operator: ∩), and set complement (postfix ') of sets. These properties assume the existence of at least two sets: a given universal set, denoted U, and the empty set, denoted {}.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...