enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.

  3. Neville's algorithm - Wikipedia

    en.wikipedia.org/wiki/Neville's_algorithm

    In mathematics, Neville's algorithm is an algorithm used for polynomial interpolation that was derived by the mathematician Eric Harold Neville in 1934. Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial.

  4. ITP method - Wikipedia

    en.wikipedia.org/wiki/ITP_Method

    In numerical analysis, the ITP method, short for Interpolate Truncate and Project, is the first root-finding algorithm that achieves the superlinear convergence of the secant method [1] while retaining the optimal [2] worst-case performance of the bisection method. [3]

  5. Aitken interpolation - Wikipedia

    en.wikipedia.org/wiki/Aitken_interpolation

    Aitken interpolation is an algorithm used for polynomial interpolation that was derived by the mathematician Alexander Aitken. It is similar to Neville's algorithm . See also Aitken's delta-squared process or Aitken extrapolation .

  6. De Casteljau's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Casteljau's_algorithm

    In the mathematical field of numerical analysis, De Casteljau's algorithm is a recursive method to evaluate polynomials in Bernstein form or Bézier curves, named after its inventor Paul de Casteljau. De Casteljau's algorithm can also be used to split a single Bézier curve into two Bézier curves at an arbitrary parameter value.

  7. Chebyshev nodes - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_nodes

    This product is a monic polynomial of degree n. It may be shown that the maximum absolute value (maximum norm) of any such polynomial is bounded from below by 2 1−n. This bound is attained by the scaled Chebyshev polynomials 2 1−n T n, which are also monic. (Recall that |T n (x)| ≤ 1 for x ∈ [−1, 1]. [5])

  8. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Download QR code; Print/export ... One can use Lagrange polynomial interpolation to find an expression for this polynomial, = ... show Example implementation in R:

  9. Smoothstep - Wikipedia

    en.wikipedia.org/wiki/Smoothstep

    Smoothstep is a family of sigmoid-like interpolation and clamping functions commonly used in computer graphics, [1] [2] video game engines, [3] and machine learning. [ 4 ] The function depends on three parameters, the input x , the "left edge" and the "right edge", with the left edge being assumed smaller than the right edge.