Search results
Results from the WOW.Com Content Network
The two major resonance forms of an amide. Another factor that plays a role in determining the reactivity of acyl compounds is resonance. Amides exhibit two main resonance forms. Both are major contributors to the overall structure, so much so that the amide bond between the carbonyl carbon and the amide nitrogen has significant double bond ...
[4] [5] The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, as in asparagine and glutamine. It can be viewed as a derivative of a carboxylic acid ( R−C(=O)−OH ) with the hydroxyl group ( −OH ) replaced by an amine group ( −NR′R″ ); or ...
Due to the electronegativity difference between carbon and oxygen / nitrogen, there will be a slight electron withdrawing effect through inductive effect (known as the –I effect). However, the other effect called resonance add electron density back to the ring (known as the +M effect) and dominate over that of inductive effect.
Ether phospholipids: phospholipids are known to have ether-linked "tails" instead of the usual ester linkage. [1] Ether on sn-1, ester on sn-2: "ether lipids" in the context of bacteria and eukaryotes refer to this class of lipids. Compared to the usual 1,2-diacyl-sn-glycerol (DAG), the sn-1 linkage is replaced with an ester bond. [1] [2] [3]
However, additional molecular interactions may render the amide form less stable; the amino group is expelled instead, resulting in an ester (Ser/Thr) or thioester (Cys) bond in place of the peptide bond. This chemical reaction is called an N-O acyl shift. The ester/thioester bond can be resolved in several ways:
In aramids these rings are connected via amide linkages each comprising a CO group attached to an NH group. In order to meet the FTC definition of an aramid, [4] at least 85% of these linkages must be attached to two aromatic rings. [5] Below 85%, the material is instead classed as nylon. [4]
Acid–base-catalysed hydrolyses are very common; one example is the hydrolysis of amides or esters. Their hydrolysis occurs when the nucleophile (a nucleus-seeking agent, e.g., water or hydroxyl ion) attacks the carbon of the carbonyl group of the ester or amide. In an aqueous base, hydroxyl ions are better nucleophiles than polar molecules ...
The amide bond is synthesized when the carboxyl group of one amino acid molecule reacts with the amino group of the other amino acid molecule, causing the release of a molecule of water (H 2 O), hence the process is a dehydration synthesis reaction. The dehydration condensation of two amino acids to form a peptide bond (red) with expulsion of ...