Search results
Results from the WOW.Com Content Network
TNT equivalent is a convention for expressing energy, typically used to describe the energy released in an explosion.The ton of TNT is a unit of energy defined by convention to be 4.184 gigajoules (1 gigacalorie), [1] which is the approximate energy released in the detonation of a metric ton (1,000 kilograms) of TNT.
This factor of two represents vibrational degrees of freedom available in solids vs. gas molecules of various complexities. In monatomic gases (like argon) at room temperature and constant volume, volumetric heat capacities are all very close to 0.5 kJ⋅K −1 ⋅m −3 , which is the same as the theoretical value of 3 / 2 RT per ...
The specific heat capacities of iron, granite, and hydrogen gas are about 449 J⋅kg −1 ⋅K −1, 790 J⋅kg −1 ⋅K −1, and 14300 J⋅kg −1 ⋅K −1, respectively. [4] While the substance is undergoing a phase transition , such as melting or boiling, its specific heat capacity is technically undefined, because the heat goes into ...
Professionals in construction, civil engineering, chemical engineering, and other technical disciplines, especially in the United States, may use the so-called English Engineering units, that include the pound (lb = 0.45359237 kg) as the unit of mass, the degree Fahrenheit or Rankine ( 5 / 9 K, about 0.55556 K) as the unit of temperature ...
Potential energy with respect to gravity, close to Earth, per unit mass: gh, where g is the acceleration due to gravity (standardized as ≈9.8 m/s 2) and h is the height above the reference level (giving J/kg when g is in m/s 2 and h is in m).
Enthalpies of melting and boiling for pure elements versus temperatures of transition, demonstrating Trouton's rule. In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.
In a zero-gravity (weightless) environment, the power-to-weight ratio would not be considered infinite. A typical turbocharged V8 diesel engine might have an engine power of 250 kW (340 hp) and a mass of 380 kg (840 lb), [1] giving it a power-to-weight ratio of 0.65 kW/kg (0.40 hp/lb).
Fusing four free protons (hydrogen nuclei) into a single alpha particle (helium nucleus) releases around 0.7% of the fused mass as energy, [68] so the Sun releases energy at the mass–energy conversion rate of 4.26 billion kg/s (which requires 600 billion kg of hydrogen [69]), for 384.6 yottawatts (3.846 × 10 26 W), [5] or 9.192 × 10 10 ...