Search results
Results from the WOW.Com Content Network
[2] [6] The "discount rate" is the rate at which the "discount" must grow as the delay in payment is extended. [7] This fact is directly tied into the time value of money and its calculations. [1] The present value of $1,000, 100 years into the future. Curves representing constant discount rates of 2%, 3%, 5%, and 7%
The discount rate is commonly used for U.S. Treasury bills and similar financial instruments. For example, consider a government bond that sells for $95 ('balance' in the bond at the start of period) and pays $100 ('balance' in the bond at the end of period) in a year's time. The discount rate is
Time value of money problems involve the net value of cash flows at different points in time. In a typical case, the variables might be: a balance (the real or nominal value of a debt or a financial asset in terms of monetary units), a periodic rate of interest, the number of periods, and a series of cash flows. (In the case of a debt, cas
Discount Rate: The cost of capital (Debt and Equity) for the business. This rate, which acts like an interest rate on future Cash inflows, is used to convert them into current dollar equivalents. This rate, which acts like an interest rate on future Cash inflows, is used to convert them into current dollar equivalents.
The NPV formula assumes that the benefits and costs occur at the end of each period, resulting in a more conservative NPV. However, it may be that the cash inflows and outflows occur at the beginning of the period or in the middle of the period. The NPV formula for mid period discounting is given by:
A formula that is accurate to within a few percent can be found by noting that for typical U.S. note rates (< % and terms =10–30 years), the monthly note rate is small compared to 1. r << 1 {\displaystyle r<<1} so that the ln ( 1 + r ) ≈ r {\displaystyle \ln(1+r)\approx r} which yields the simplification:
The need for day count conventions is a direct consequence of interest-earning investments. Different conventions were developed to address often conflicting requirements, including ease of calculation, constancy of time period (day, month, or year) and the needs of the accounting department.
For example, a nominal interest rate of 6% compounded monthly is equivalent to an effective interest rate of 6.17%. 6% compounded monthly is credited as 6%/12 = 0.005 every month. After one year, the initial capital is increased by the factor (1 + 0.005) 12 ≈ 1.0617. Note that the yield increases with the frequency of compounding.