enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial options pricing model - Wikipedia

    en.wikipedia.org/wiki/Binomial_options_pricing_model

    In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" ( lattice based ) model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting.

  3. Valuation of options - Wikipedia

    en.wikipedia.org/wiki/Valuation_of_options

    In finance, a price (premium) is paid or received for purchasing or selling options.This article discusses the calculation of this premium in general. For further detail, see: Mathematical finance § Derivatives pricing: the Q world for discussion of the mathematics; Financial engineering for the implementation; as well as Financial modeling § Quantitative finance generally.

  4. Lattice model (finance) - Wikipedia

    en.wikipedia.org/wiki/Lattice_model_(finance)

    The simplest lattice model is the binomial options pricing model; [7] the standard ("canonical" [8]) method is that proposed by Cox, Ross and Rubinstein (CRR) in 1979; see diagram for formulae. Over 20 other methods have been developed, [ 9 ] with each "derived under a variety of assumptions" as regards the development of the underlying's price ...

  5. Monte Carlo methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_methods_for...

    In mathematical finance, a Monte Carlo option model uses Monte Carlo methods [Notes 1] to calculate the value of an option with multiple sources of uncertainty or with complicated features. [1] The first application to option pricing was by Phelim Boyle in 1977 (for European options ).

  6. How implied volatility works with options trading

    www.aol.com/finance/implied-volatility-works...

    To better understand how implied volatility impacts pricing, let’s consider a simple example. ... The most common option pricing model is the Black-Scholes model, though there are others, such ...

  7. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    Finite difference methods were first applied to option pricing by Eduardo Schwartz in 1977. [2] [3]: 180 In general, finite difference methods are used to price options by approximating the (continuous-time) differential equation that describes how an option price evolves over time by a set of (discrete-time) difference equations.

  8. Option (finance) - Wikipedia

    en.wikipedia.org/wiki/Option_(finance)

    The model starts with a binomial tree of discrete future possible underlying stock prices. By constructing a riskless portfolio of an option and stock (as in the Black–Scholes model) a simple formula can be used to find the option price at each node in the tree.

  9. Black–Scholes model - Wikipedia

    en.wikipedia.org/wiki/Black–Scholes_model

    [12] [13] [14] Robert C. Merton was the first to publish a paper expanding the mathematical understanding of the options pricing model, and coined the term "Black–Scholes options pricing model". The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other ...