Search results
Results from the WOW.Com Content Network
A direct equiangular polygon has all angles turning in the same direction in a plane and can include multiple turns. Convex equiangular polygons are always direct. An indirect equiangular polygon can include angles turning right or left in any combination. A skew equiangular polygon may be isogonal, but can't be considered direct since it is ...
A regular hexagon has Schläfli symbol {6} [2] and can also be constructed as a truncated equilateral triangle, t{3}, which alternates two types of edges. A regular hexagon is defined as a hexagon that is both equilateral and equiangular. It is bicentric, meaning that it is both cyclic (has a circumscribed circle) and tangential (has an ...
The polygon is the convex hull of its edges. Additional properties of convex polygons include: The intersection of two convex polygons is a convex polygon. A convex polygon may be triangulated in linear time through a fan triangulation, consisting in adding diagonals from one vertex to all other vertices.
Conversely, a convex quadrilateral in which the four angle bisectors meet at a point must be tangential and the common point is the incenter. [ 4 ] According to the Pitot theorem , the two pairs of opposite sides in a tangential quadrilateral add up to the same total length, which equals the semiperimeter s of the quadrilateral:
In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.
[2] [3] A kite may also be called a dart, [4] particularly if it is not convex. [5] [6] Every kite is an orthodiagonal quadrilateral (its diagonals are at right angles) and, when convex, a tangential quadrilateral (its sides are tangent to an inscribed circle). The convex kites are exactly the quadrilaterals that are both orthodiagonal and ...
The dual of a non-convex polyhedron is also a non-convex polyhedron. [2] (By contraposition.) The dual of an isotoxal polyhedron is also an isotoxal polyhedron. (See the Dual polyhedron article.) There are nine convex isotoxal polyhedra: the five Platonic solids, the two (quasiregular) common cores of dual Platonic solids, and their two duals.
Some Reuleaux polygons have side lengths that are irrational multiples of each other, but if a Reuleaux polygon has sides that can be partitioned into a system of arcs of equal length, then the polygon formed as the convex hull of the endpoints of these arcs is defined as a Reinhardt polygon. Necessarily, the vertices of the underlying Reuleaux ...