Search results
Results from the WOW.Com Content Network
In textbooks, channel length modulation in active mode usually is described using the Shichman–Hodges model, accurate only for old technology: [2] where = drain current, ′ = technology parameter sometimes called the transconductance coefficient, W, L = MOSFET width and length, = gate-to-source voltage, =threshold voltage, = drain-to-source voltage, =, and λ = channel-length modulation ...
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary ...
The wetted perimeter for a channel is the total perimeter of all channel walls that are in contact with the flow. [12] This means that the length of the channel exposed to air is not included in the wetted perimeter. For a circular pipe, the hydraulic diameter is exactly equal to the inside pipe diameter: =.
The length of a sinusoidal wave is commonly expressed as an angle, in units of degrees (with 360° in a wavelength) or radians (with 2π radians in a wavelength). So alternately the electrical length can be expressed as an angle which is the phase shift of the wave between the ends of the conductor [1] [3] [5]
For an M1 Profile, you must find the rise at the downstream boundary condition, the normal depth at the upstream boundary condition, and also the length of the transition.) To find the length of the gradually varied flow transitions, iterate the “step length”, instead of height, at the boundary condition height until equations 4 and 5 agree.
In a fast-fading channel, where the latency requirement is greater than the coherence time and the codeword length spans many coherence periods, one can average over many independent channel fades by coding over a large number of coherence time intervals.
The hydraulic diameter, D H, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where