Search results
Results from the WOW.Com Content Network
An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in the hole in the center of the coil. The magnetic field disappears when the current is turned off.
The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electrostatics and magnetism, which are distinct but closely intertwined phenomena. Electromagnetic forces occur between any two charged particles.
Electromagnetism is one of the fundamental forces of nature. Early on, electricity and magnetism were studied separately and regarded as separate phenomena. Hans Christian Ørsted discovered that the two were related – electric currents give rise to magnetism.
Electromagnetic induction has found many applications, including electrical components such as inductors and transformers, and devices such as electric motors and generators. History Faraday's experiment showing induction between coils of wire: The liquid battery (right) provides a current that flows through the small coil (A) , creating a ...
The electromagnetic field is described by classical electrodynamics, an example of a classical field theory. This theory describes many macroscopic physical phenomena accurately. [6] However, it was unable to explain the photoelectric effect and atomic absorption spectroscopy, experiments at the atomic scale.
The science of electromagnetic propulsion does not have origins with any one individual and has application in many different fields. The thought of using magnets for propulsion continues to this day and has been dreamed of since at least 1897 when John Munro published his fictional story "A Trip to Venus".
Superconducting magnets have a number of advantages over resistive electromagnets. They can generate much stronger magnetic fields than ferromagnetic-core electromagnets, which are limited to fields of around 2 T. The field is generally more stable, resulting in less noisy measurements.
In one simple motor design, a magnet is fixed to a freely rotating shaft and subjected to a magnetic field from an array of electromagnets. By continuously switching the electric current through each of the electromagnets, thereby flipping the polarity of their magnetic fields, like poles are kept next to the rotor; the resultant torque is ...