Ads
related to: what does laplace equation mean in algebraeducation.com has been visited by 100K+ users in the past month
- 20,000+ Worksheets
Browse by grade or topic to find
the perfect printable worksheet.
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- 20,000+ Worksheets
Search results
Results from the WOW.Com Content Network
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
Solutions of the Laplace equation, i.e. functions whose Laplacian is identically zero, thus represent possible equilibrium densities under diffusion. The Laplace operator itself has a physical interpretation for non-equilibrium diffusion as the extent to which a point represents a source or sink of chemical concentration, in a sense made ...
The Laplace transform reduces a linear differential equation to an algebraic equation, which can then be solved by the formal rules of algebra. The original differential equation can then be solved by applying the inverse Laplace transform.
A useful starting point and organizing principle in the study of harmonic functions is a consideration of the symmetries of the Laplace equation. Although it is not a symmetry in the usual sense of the term, we can start with the observation that the Laplace equation is linear. This means that the fundamental object of study in potential theory ...
the population mean or expected value in probability and statistics; a measure in measure theory; micro-, an SI prefix denoting 10 −6 (one millionth) Micrometre or micron (retired in 1967 as a standalone symbol, replaced by "μm" using the standard SI meaning) the coefficient of friction in physics; the service rate in queueing theory
Once the fundamental solution is found, it is straightforward to find a solution of the original equation, through convolution of the fundamental solution and the desired right hand side. Fundamental solutions also play an important role in the numerical solution of partial differential equations by the boundary element method.
This Jennifer Aniston-fave serum stick is the ideal delivery system for softening fine lines, prepping skin for makeup and targeting dry patches (I've tried it — it actually blurred my wrinkles).
This is a fundamental result in the study of analytic partial differential equations. Surprisingly, the theorem does not hold in the setting of smooth functions; an example discovered by Hans Lewy in 1957 consists of a linear partial differential equation whose coefficients are smooth (i.e., have derivatives of all orders) but not analytic for ...
Ads
related to: what does laplace equation mean in algebraeducation.com has been visited by 100K+ users in the past month