Search results
Results from the WOW.Com Content Network
The Makridakis Competitions (also known as the M Competitions or M-Competitions) are a series of open competitions to evaluate and compare the accuracy of different time series forecasting methods. They are organized by teams led by forecasting researcher Spyros Makridakis and were first held in 1982. [1] [2] [3] [4]
Kaggle is a data science competition platform and online community for data scientists and machine learning practitioners under Google LLC.Kaggle enables users to find and publish datasets, explore and build models in a web-based data science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.
Pages in category "Forecasting competitions" ... Kaggle; M. Makridakis Competitions This page was last edited on 26 November 2016, at 22:14 ...
Howard first became involved with Kaggle, founded in April 2010, [9] after becoming the globally top-ranked participant in data science competitions in both 2010 and 2011. The competitions that Howard won involved tourism forecasting [10] and predicting the success of grant applications. [11] Howard then became the President and Chief Scientist ...
The Global Energy Forecasting Competition (GEFCom) is a competition conducted by a team led by Dr. Tao Hong that invites submissions around the world for forecasting energy demand. [1] GEFCom was first held in 2012 on Kaggle , [ 2 ] and the second GEFCom was held in 2014 on CrowdANALYTIX.
Regression, Forecasting 2014 [441] Jagadish et al. PeMS Speed, flow, occupancy and other metrics from loop detectors and other sensors in the freeway of the State of California, U.S.A.. Metric usually aggregated via Average into 5 minutes timesteps. 39,000 individual detectors, each containing years of timeseries Comma separated values
Anthony John Goldbloom (born 21 June 1983) is the founder and former CEO of Kaggle, a data science competition platform which has used predictive modelling competitions to solve data problems for companies, such as NASA, Wikipedia, [1] Ford and Deloitte.
Bayesian structural time series (BSTS) model is a statistical technique used for feature selection, time series forecasting, nowcasting, inferring causal impact and other applications. The model is designed to work with time series data.