Search results
Results from the WOW.Com Content Network
A resistor–inductor circuit (RL circuit), or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. [1] A first-order RL circuit is composed of one resistor and one inductor, either in series driven by a voltage source or in parallel driven by a current source.
Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.
An RLC circuit (or LCR circuit) is an electrical circuit consisting of a resistor, an inductor, and a capacitor, connected in series or in parallel.The RLC part of the name is due to those letters being the usual electrical symbols for resistance, inductance and capacitance respectively.
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
Simplified model for powering a load with resistance R L by a source with voltage V S and resistance R S.. The theorem was originally misunderstood (notably by Joule [4]) to imply that a system consisting of an electric motor driven by a battery could not be more than 50% efficient, since the power dissipated as heat in the battery would always be equal to the power delivered to the motor when ...
Reactance is defined as the imaginary part of electrical impedance, and is analogous to but not generally equal to the negative reciprocal of the susceptance – that is their reciprocals are equal and opposite only in the special case where the real parts vanish (either zero resistance or zero conductance). In the special case of entirely zero ...
%PDF-1.5 %âãÏÓ 100 0 obj > endobj xref 100 62 0000000016 00000 n 0000002402 00000 n 0000002539 00000 n 0000001570 00000 n 0000002637 00000 n 0000002762 00000 n 0000003272 00000 n 0000003519 00000 n 0000003561 00000 n 0000004173 00000 n 0000005340 00000 n 0000005569 00000 n 0000005954 00000 n 0000006116 00000 n 0000006328 00000 n 0000006538 00000 n 0000006700 00000 n 0000006911 00000 n ...
The formula describing a current divider is similar in form to that for the voltage divider. However, the ratio describing current division places the impedance of the considered branches in the denominator, unlike voltage division, where the considered impedance is in the numerator. This is because in current dividers, total energy expended is ...