Search results
Results from the WOW.Com Content Network
Spiral array model: pitch class, major/minor chord, and major/minor key helices. The model as proposed covers basic pitches, major chords, minor chords, major keys and minor keys, represented on five concentric helices. Starting with a formulation of the pitch helix, inner helices are generated as convex combinations of points on outer ones.
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...
Intriguingly, for most chords multiplicity values are less than the actual number of constituent tones—a prediction that has been validated empirically. [citation needed] Pitch salience is the clarity or prominence of a pitch sensation. The root of a major chord in root position has greater pitch salience than other tones in that chord.
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry, a circular segment or disk segment (symbol: ⌓) is a region of a disk [1] which is "cut off" from the rest of the disk by a straight line.
A tension is an additional chord member that creates a relatively dissonant interval in relation to the bass. The notion of counterpoint seeks to understand and describe the relationships between melodic lines, often in the context of a polyphonic texture of several simultaneous but independent voices. Therefore, it is sometimes seen as a type ...
Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).
The angle between a chord and the tangent at one of its endpoints is equal to one half the angle subtended at the centre of the circle, on the opposite side of the chord (tangent chord angle). If the angle subtended by the chord at the centre is 90°, then ℓ = r √2, where ℓ is the length of the chord, and r is the radius of the circle.
This formula is also true for other units of measurement such as in feet. The relationship of versine, chord and radius is derived from the Pythagorean theorem. Based on the diagram on the right: = We can replace OC with r (radius) minus v, OA with r and AC with L/2 (half a chord).