Search results
Results from the WOW.Com Content Network
Surface map of oceanic crust showing the generation of younger (red) crust and eventual destruction of older (blue) crust. This demonstrates the crustal spatial evolution at the Earth's surface dictated by plate tectonics. Earth's crustal evolution involves the formation, destruction and renewal of the rocky outer shell at that planet's surface.
The Vine–Matthews–Morley hypothesis, also known as the Morley–Vine–Matthews hypothesis, was the first key scientific test of the seafloor spreading theory of continental drift and plate tectonics. Its key impact was that it allowed the rates of plate motions at mid-ocean ridges to be computed.
Other lines of evidence supporting a back-arc, Sea of Japan-style tectonic model for the Taconic orogeny in the southern Appalachians include mixing of Ordovician and Grenville (ca. 1 billion year old) detrital zircons in metamorphosed sedimentary sequences, and interlayering of metamorphosed Ordovician volcanic rocks with sedimentary rocks ...
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') [1] is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago.
Continental drift is the scientific theory, originating in the early 20th century, that Earth's continents move or drift relative to each other over geologic time. [1] The theory of continental drift has since been validated and incorporated into the science of plate tectonics, which studies the movement of the continents as they ride on plates of the Earth's lithosphere.
Subduction is the density-driven process by which one tectonic plate moves under another and sinks into the mantle at a convergent boundary.Gravitational pull from dense slabs provides approximately 90% of the driving force for plate tectonics, [2] and consequently subduction is crucial in changing the Earth's layout, guiding its thermal evolution [3] and building its compositional structure. [1]
Geological evidence of rocks younger than 59 Ma and deposited on top of the turbidite sequence can be considered as indicators to reconstruct tectonic evolution after collision had begun. Various evidence documented along NE-SW and NW-SE sections of the India–Asia collision zone synchronize with each other, being in favour of a "one-off ...
From an early date, [7] geologists have struggled to explain the presence in Nevada and adjacent areas of the Antler orogenic deposits without achieving a consensus. The advent of plate tectonic theory provided a variety of possible mechanisms by which the Roberts Mountains thrust and the orogenic deposits could be explained, but none of them has been universally accepted.