Search results
Results from the WOW.Com Content Network
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal.
Many graph-based data structures are used in computer science and related fields: Graph; Adjacency list; Adjacency matrix; Graph-structured stack; Scene graph; Decision tree. Binary decision diagram; Zero-suppressed decision diagram; And-inverter graph; Directed graph; Directed acyclic graph; Propositional directed acyclic graph; Multigraph ...
Graphs with trillions of edges occur in machine learning, social network analysis, and other areas. Compressed graph representations have been developed to reduce I/O and memory requirements. General techniques such as Huffman coding are applicable, but the adjacency list or adjacency matrix can be processed in specific ways to increase ...
Graph coloring [2] [3]: GT4 Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph.
Laplacian matrix — a matrix equal to the degree matrix minus the adjacency matrix for a graph, used to find the number of spanning trees in the graph. Seidel adjacency matrix — a matrix similar to the usual adjacency matrix but with −1 for adjacency; +1 for nonadjacency; 0 on the diagonal. Skew-adjacency matrix — an adjacency matrix in ...
adjacency matrix The adjacency matrix of a graph is a matrix whose rows and columns are both indexed by vertices of the graph, with a one in the cell for row i and column j when vertices i and j are adjacent, and a zero otherwise. [4] adjacent 1. The relation between two vertices that are both endpoints of the same edge. [2] 2.
An edge list is a data structure used to represent a graph as a list of its edges. An (unweighted) edge is defined by its start and end vertex, so each edge may be represented by two numbers. [ 1 ] The entire edge list may be represented as a two-column matrix.
The complete bipartite graph K m,n has a vertex covering number of min{m, n} and an edge covering number of max{m, n}. The complete bipartite graph K m,n has a maximum independent set of size max{m, n}. The adjacency matrix of a complete bipartite graph K m,n has eigenvalues √ nm, − √ nm and 0; with multiplicity 1, 1 and n + m − 2 ...