enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    A regular dodecahedron or pentagonal dodecahedron [notes 1] is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. It is an example of Platonic solids, described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler. However, the regular dodecahedron ...

  3. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    The concave equilateral dodecahedron, called an endo-dodecahedron. [clarification needed] A cube can be divided into a pyritohedron by bisecting all the edges, and faces in alternate directions. A regular dodecahedron is an intermediate case with equal edge lengths. A rhombic dodecahedron is a degenerate case with the 6 crossedges reduced to ...

  4. Small dodecahemidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Small_dodecahemidodecahedron

    3D model of a small dodecahemidodecahedron. In geometry, the small dodecahemidodecahedron is a nonconvex uniform polyhedron, indexed as U 51.It has 18 faces (12 pentagons and 6 decagons), 60 edges, and 30 vertices. [1]

  5. File:Small Stellated Dodecahedron Net.svg - Wikipedia

    en.wikipedia.org/wiki/File:Small_Stellated...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  6. Dodecadodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecadodecahedron

    A shape with the same exterior appearance as the dodecadodecahedron can be constructed by folding up these nets: 12 pentagrams and 20 rhombic clusters are necessary. . However, this construction replaces the crossing pentagonal faces of the dodecadodecahedron with non-crossing sets of rhombi, so it does not produce the same internal st

  7. Small stellated dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Small_stellated_dodecahedron

    3D model of a small stellated dodecahedron. In geometry, the small stellated dodecahedron is a Kepler–Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {5 ⁄ 2,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

  8. Polyhedral graph - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_graph

    The polyhedral graph formed as the Schlegel diagram of a regular dodecahedron. In geometric graph theory, a branch of mathematics, a polyhedral graph is the undirected graph formed from the vertices and edges of a convex polyhedron. Alternatively, in purely graph-theoretic terms, the polyhedral graphs are the 3-vertex-connected, planar graphs.

  9. Ditrigonal dodecadodecahedron - Wikipedia

    en.wikipedia.org/wiki/Ditrigonal_dodecadodecahedron

    Its convex hull is a regular dodecahedron. It additionally shares its edge arrangement with the small ditrigonal icosidodecahedron (having the pentagrammic faces in common), the great ditrigonal icosidodecahedron (having the pentagonal faces in common), and the regular compound of five cubes.