Search results
Results from the WOW.Com Content Network
Each Haversian canal generally contains one or two capillaries and many nerve fibres. The channels are formed by concentric layers called lamellae , which are approximately 50 μm in diameter . The Haversian canals surround blood vessels and nerve cells throughout bones and communicate with osteocytes (contained in spaces within the dense bone ...
Each osteon consists of concentric layers, or lamellae, of compact bone tissue that surround a central canal, the Haversian canal. The Haversian canal contains the bone's blood supplies. The boundary of an osteon is the cement line. Each Haversian canal is surrounded by varying number (5-20) of concentrically arranged lamellae of bone matrix.
Volkmann's canals, also known as perforating holes or channels, are anatomic arrangements in cortical bones that allow blood vessels to enter the bones from periosteum. They interconnect the Haversian canals (running inside osteons ) with each other and the periosteum.
X 100. a, Haversian canals; b, lacunae seen from the side; c, others seen from the surface in lamella, which are cut horizontally. Nucleated bone cells and their processes, contained in the bone lacunae and their canaliculi respectively.
Fibrolamellar bone is fairly common in young crocodilians and sometimes found in adults. [68] [69] Haversian bone has been found in turtles, crocodilians and tortoises, [70] but is often absent in small birds, bats, shrews and rodents. [69] Nevertheless, de Ricqlès persevered with studies of the bone structure of dinosaurs and archosaurs.
The cardiovascular centre affects changes to the heart rate by sending a nerve impulse to the cardiac pacemaker via two sets of nerves: sympathetic fibres, part of the autonomic nervous system, to make heart rate faster. the vagus nerve, part of the parasympathetic branch of the autonomic nervous system, to lower heart rate.
The heart's cardiac skeleton comprises four dense connective tissue rings that encircle the mitral and tricuspid atrioventricular (AV) canals and extend to the origins of the pulmonary trunk and aorta. This provides crucial support and structure to the heart while also serving to electrically isolate the atria from the ventricles. [1]
In bovine tibia diameter of canaliculi was found to vary from 155 to 844 nm (average 426 nm). [2] In mice humeri it varies from 80 to 710 nm (average 259 nm), while diameter of osteocytic processes varies from 50 to 410 nm (average 104 nm).