Search results
Results from the WOW.Com Content Network
In complex analysis, complex-differentiability is defined using the same definition as single-variable real functions. This is allowed by the possibility of dividing complex numbers . So, a function f : C → C {\textstyle f:\mathbb {C} \to \mathbb {C} } is said to be differentiable at x = a {\textstyle x=a} when
If, in addition, the output value of f also represents a position (in a Euclidean space), then a dimensional analysis confirms that the output value of df must be a velocity. If one treats the differential in this manner, then it is known as the pushforward since it "pushes" velocities from a source space into velocities in a target space.
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.
In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. [1] It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve.
In complex analysis, it is natural to define differentiation via holomorphic functions, which have a number of useful properties, such as repeated differentiability, expressibility as power series, and satisfying the Cauchy integral formula. In real analysis, it is usually more natural to consider differentiable, smooth, or harmonic functions ...
When more specific types of differentiation are necessary, such as in multivariate calculus or tensor analysis, other notations are common. For a function f of a single independent variable x , we can express the derivative using subscripts of the independent variable:
In p-adic analysis, the usual definition of derivative is not quite strong enough, and one requires strict differentiability instead. The Gateaux derivative extends the Fréchet derivative to locally convex topological vector spaces. Fréchet differentiability is a strictly stronger condition than Gateaux differentiability, even in finite ...