Search results
Results from the WOW.Com Content Network
See: E-Z notation Violet leaf aldehyde, systematic name (E,Z)-nona-2,6-dienal, is a compound having one (E)- and one (Z)-configured double bond. The descriptors (E) (from German entgegen, 'opposite') and (Z) (from German zusammen, 'together') are used to provide a distinct description of the substitution pattern for alkenes, cumulenes or other double bond systems such as oximes.
In stereochemistry, an epimer is one of a pair of diastereomers. [1] The two epimers have opposite configuration at only one stereogenic center out of at least two. [2] All other stereogenic centers in the molecules are the same in each. Epimerization is the interconversion of one epimer to the other epimer.
One of the first such racemates studied, by Pasteur in 1853, forms from a 1:2 mixture of the bis ammonium salt of (+)-tartaric acid and the bis ammonium salt of (−)-malic acid in water. Re-investigated in 2008, [ 9 ] the crystals formed are dumbbell -shape with the central part consisting of ammonium (+)-bitartrate, whereas the outer parts ...
A molecule may contain any number of stereocenters and any number of double bonds, and each usually gives rise to two possible isomers. A molecule with an integer n describing the number of stereocenters will usually have 2 n stereoisomers, and 2 n−1 diastereomers each having an associated pair of enantiomers.
As an example, four of the carbon atoms of the aldohexose class of molecules are asymmetric, therefore the Le Bel–Van 't Hoff rule gives a calculation of 2 4 = 16 stereoisomers. This is indeed the case: these chemicals are two enantiomers each of eight different diastereomers : allose , altrose , glucose , mannose , gulose , idose , galactose ...
Two enantiomers of a generic amino acid at the stereocenter. In stereochemistry, a stereocenter of a molecule is an atom (center), axis or plane that is the focus of stereoisomerism; that is, when having at least three different groups bound to the stereocenter, interchanging any two different groups creates a new stereoisomer.
For example, dibromocarbene and cis-2-butene yield cis-2,3-dimethyl-1,1-dibromocyclopropane, whereas the trans isomer exclusively yields the trans cyclopropane. [ 4 ] This addition remains stereospecific even if the starting alkene is not isomerically pure, as the products' stereochemistry will match the reactants'.
Enantiotopic groups are identical and indistinguishable except in chiral environments. For instance, the CH 2 hydrogens in ethanol (CH 3 CH 2 OH) are normally enantiotopic, but can be made different (diastereotopic) if combined with a chiral center, for instance by conversion to an ester of a chiral carboxylic acid such as lactic acid, or if coordinated to a chiral metal center, or if ...