Search results
Results from the WOW.Com Content Network
Molecular neuroscience is a branch of neuroscience that observes concepts in molecular biology applied to the nervous systems of animals. The scope of this subject covers topics such as molecular neuroanatomy, mechanisms of molecular signaling in the nervous system, the effects of genetics and epigenetics on neuronal development, and the molecular basis for neuroplasticity and ...
Jeffress' model proposes that two signals even from an asynchronous arrival of sound in the cochlea of each ear will converge synchronously on a coincidence detector in the auditory cortex based on the magnitude of the ITD (Fig. 2). Therefore, the ITD should correspond to an anatomical map that can be found within the brain.
Neuroplasticity is the process by which neurons adapt to a disturbance over time, and most often occurs in response to repeated exposure to stimuli. [27] Aerobic exercise increases the production of neurotrophic factors [note 1] (e.g., BDNF, IGF-1, VEGF) which mediate improvements in cognitive functions and various forms of memory by promoting blood vessel formation in the brain, adult ...
The following outline is provided as an overview of and topical guide to neuroscience: Neuroscience is the scientific study of the structure and function of the nervous system. [1] [2] It encompasses the branch of biology [3] that deals with the anatomy, biochemistry, molecular biology, and physiology of neurons and neural circuits.
He was also one of the first scientists to believe that through chemical means, the vast majority of neurological diseases could be treated, if not cured. [ 2 ] Irvine Page (1901-1991) was an American psychologist that published the first major textbook focusing on neurochemistry in 1937.
One of the most noticeable results of further research into neurogenetics is a greater knowledge of gene loci that show linkage to neurological diseases. The table below represents a sampling of specific gene locations identified to play a role in selected neurological diseases based on prevalence in the United States. [9] [10] [11] [12]
Neurotransmission is regulated by several different factors: the availability and rate-of-synthesis of the neurotransmitter, the release of that neurotransmitter, the baseline activity of the postsynaptic cell, the number of available postsynaptic receptors for the neurotransmitter to bind to, and the subsequent removal or deactivation of the ...
In neuroscience, threshold potentials are necessary to regulate and propagate signaling in both the central nervous system (CNS) and the peripheral nervous system (PNS). Most often, the threshold potential is a membrane potential value between –50 and –55 mV , [ 1 ] but can vary based upon several factors.